1,766 research outputs found

    Double-exciton component of the cyclotron spin-flip mode in a quantum Hall ferromagnet

    Full text link
    We report on the calculation of the cyclotron spin-flip excitation (CSFE) in a spin-polarized quantum Hall system at unit filling. This mode has a double-exciton component which contributes to the CSFE correlation energy but can not be found by means of a mean field approach. The result is compared with available experimental data.Comment: 9 pages, 2 figure

    Resonance-like electrical control of electron spin for microwave measurement

    Full text link
    We demonstrate that the spin-polarized electron current can interact with a microwave electric field in a resonant manner. The spin-orbit interaction gives rise to an effective magnetic field proportional to the electric current. In the presence of both dc and ac electric field components, electron spin resonance occurs if the ac frequency matches with the spin precession frequency that is controlled by the dc field. In a device consisting of two spin-polarized contacts connected by a two-dimensional channel, this mechanism allows electrically tuned detection of the ac signal frequency and amplitude. For GaAs, such detection is effective in the frequency domain around tens of gigahertz.Comment: 10 pages, 2 figure

    Spin-orbit-induced correlations of the local density of states in two-dimensional electron gas

    Full text link
    We study the local density of states (LDOS) of two-dimensional electrons in the presence of spin-orbit (SO) coupling. Although SO coupling has no effect on the average density of states, it manifests itself in the correlations of the LDOS. Namely, the correlation function acquires two satellites centered at energy difference equal to the SO splitting, 2ωSO2\omega_{SO}, of the electron Fermi surface. For a smooth disorder the satellites are well separated from the main peak. Weak Zeeman splitting ωZ≪ωSO\omega_{Z} \ll \omega_{SO} in a parallel magnetic field causes an anomaly in the shape of the satellites. We consider the effect of SO-induced satellites in the LDOS correlations on the shape of the correlation function of resonant-tunneling conductances at different source-drain biases, which can be measured experimentally. This shape is strongly sensitive to the relation between ωSO\omega_{SO} and ωZ\omega_{Z}.Comment: 10 pages, 4 figure

    Quantum transport in a curved one-dimensional quantum wire with spin-orbit interactions

    Full text link
    The one-dimensional effective Hamiltonian for a planar curvilinear quantum wire with arbitrary shape is proposed in the presence of the Rashba spin-orbit interaction. Single electron propagation through a device of two straight lines conjugated with an arc has been investigated and the analytic expressions of the reflection and transmission probabilities have been derived. The effects of the device geometry and the spin-orbit coupling strength α\alpha on the reflection and transmission probabilities and the conductance are investigated in the case of spin polarized electron incidence. We find that no spin-flip exists in the reflection of the first junction. The reflection probabilities are mainly influenced by the arc angle and the radius, while the transmission probabilities are affected by both spin-orbit coupling and the device geometry. The probabilities and the conductance take the general behavior of oscillation versus the device geometry parameters and α\alpha . Especially the electron transportation varies periodically versus the arc angle θw\theta_{w}. We also investigate the relationship between the conductance and the electron energy, and find that electron resonant transmission occurs for certain energy. Finally, the electron transmission for the incoming electron with arbitrary state is considered. For the outgoing electron, the polarization ratio is obtained and the effects of the incoming electron state are discussed. We find that the outgoing electron state can be spin polarization and reveal the polarized conditions.Comment: 7 pages, 8 figure

    Turbulence in Binary Bose-Einstein Condensates Generated by Highly Non-Linear Rayleigh-Taylor and Kelvin-Helmholtz Instabilities

    Get PDF
    Quantum turbulence (QT) generated by the Rayleigh-Taylor instability in binary immiscible ultracold 87Rb atoms at zero temperature is studied theoretically. We show that the quantum vortex tangle is qualitatively different from previously considered superfluids, which reveals deep relations between QT and classical turbulence. The present QT may be generated at arbitrarily small Mach numbers, which is a unique property not found in previously studied superfluids. By numerical solution of the coupled Gross-Pitaevskii equations we find that the Kolmogorov scaling law holds for the incompressible kinetic energy. We demonstrate that the phenomenon may be observed in the laboratory.Comment: Revised version. 7 pages, 8 figure

    Magnetic field effects on spin relaxation in heterostructures

    Full text link
    Effect of magnetic field on electron spin relaxation in quantum wells is studied theoretically. We have shown that Larmor effect and cyclotron motion of carriers can either jointly suppress D'yakonov-Perel' spin relaxation or compensate each other. The spin relaxation rates tensor is derived for any given direction of the external field and arbitrary ratio of bulk and structural contributions to spin splitting. Our results are applied to the experiments on electron spin resonance in SiGe heterostructures, and enable us to extract spin splitting value for such quantum wells.Comment: 6 pages, 4 figure

    Spin relaxation in an InAs quantum dot in the presence of terahertz driving fields

    Full text link
    The spin relaxation in a 1D InAs quantum dot with the Rashba spin-orbit coupling under driving THz magnetic fields is investigated by developing the kinetic equation with the help of the Floquet-Markov theory, which is generalized to the system with the spin-orbit coupling, to include both the strong driving field and the electron-phonon scattering. The spin relaxation time can be effectively prolonged or shortened by the terahertz magnetic field depending on the frequency and strength of the terahertz magnetic field. The effect can be understood as the sideband-modulated spin-phonon scattering. This offers an additional way to manipulate the spin relaxation time.Comment: 8 pages, 1 figure, to be published in PR
    • …
    corecore